Flexible AutoML :

Accelerating AutoML adoption
across Amazon

Abhishek Divekar (adivekar@amazon.com)

International Machine Learning, Amazon

\/‘7

L

Current approach to AutoML

» Popular AutoML systems available
» AutoGluon AWS AutoPilot, Google AutoML Tables,
TPOT, H20.ai, etc.

» User Approach
* AutoML user gathers training dataset.
* AutoML system creates a model.
Result

. Case C (common): model misses performance by 1%, or is too slow
Case D (common): data Scientist builds custom model, needs 6+ months of ML Engineer

effort to be deployed
Auto-
Skleam

Persona 1: AutoML for Non-Tech users

Common Pitfall
Model misses performance by 1%, or is too slow
(Case Q)

User

._,'_,. Possible Solution

User

Non-Tech users (Data associates,
Product managers, etc) build
model using AutoML system as Requirement

black-box Flexible AutoML system where any component can
be customized

_/‘7

Persona 2: AutoML for Data Scientists

Data Scientists are good at using standard ML
modeling best-practices* but face while
productionizing:

Select models looking at latency cOmmon Pitfall

and code-dependencies in the A
deployment environment (Case D) Capable of building custom maodels

Use K-fold Cross-Validation but needs 6+ months of engineering effort
performance to select between to be deployed

modeling approaches Possible Solution

Don't tune hyperparameters by
hand, use Random Search /
Bayesian Optimization / BOHB

Don't use XGBoost/BERT/ResNet
as the only approach, but try
many algorithms

Measure multiple metrics & tune R .
hyperparameters based on EC|UII‘ES

business metrics

*[1] How to avoid Machine Learning Pitfalls, Michael A. Lones; [2] Machine Learning Yearning, Andrew
Ng; [3] Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning, Sebastian Raschka

Litmus

A platform to offer flexible AutoML
and accelerate AutoML adoption

Flexible AutoML for non-tech users

“Standard” AutoML “Flexible” AutoML

meom Hi

User

&

Scientist

User

Non-Tech users build model using
AutoML system as black-box

Data Scientist specifies AutoML
recipe:

> Try pipeline-A/B/C

> Gather data for class X
Non-tech users iterate through
recipe until model meets
performance bar

Reach out to Data Scientist for
possible customization if
recipe does not work

imple UX for non-tech users

'Train' Data Set

'Validation' Data Set (Optional)

Name: gibberish_12Sep2022_train Version: Clear ‘ 'Test' Data Set (Optional)
o s

(D ASIN Classification Problem (Select only if you want to use additional features from Feature Repository)

¥ Configure Outputs

'Output Model' ML Model

S3 Location to save the model

Name: gibberish_12Sep2022_data_gcoDrR_algo_IEy1Ee_model Version:| 1.0 ¥ ‘

s3://model-factory-220777847701/litmus_created/pr-nm0400L755R900qD/model/gibberish_12Sep2022_data_gcoDrR_algo_IEy1Ee_wf

¥ Training Pipeline Details

Select Pipelines

Name: gibberish_12Sep2022_test Version: Clear ‘

Blazing Text

Description
Uses optimized i ions of Word2vec and text classification
algorithms

Use Case
You have large data, and need fast training time

Learn More
Click here [4

Parameters
{"mode":"supervised","buckets":3000000,"epochs":35,"learning_rate":0.3
,"subwords":false,"vector_dim":100,"word_ngrams":2},
hpoEnabled=false

Vowpal Wabbit

Description
Uses the versatile Vowpal Wabbit algorithm

Use Case
You have numeric values, and are ok with slightly more training time

Learn More
Click here [3

Parameters

AmaBERT

Description
Uses BERT models that have been customized on Amazon Data

Use Case
You have small to medium size data, and need high accuracy

Learn More
Click here [

Parameters

Simple UX for training

e User selects model based
on recipe, else we select
based on data
Automatic hyperparameter
tuning, K-fold, etc

Configurable UX for Scientists

litmus.traini

data=[
TaskData.create(
name='gl_classification_data’,
task=('multi-class', 'classification'),
data={'train': "s3i//...", “test': 's3://..."%, },
schema={
...
}
k_fold=5 ## Or, a KFoldCV object
)
]:
algorithm=[
'XGBoost', ## Creates litmus.XGBoost() with default hyperparams
litmus.XGBoost().hyperparams(max_depth=5),
CustomAlgorithm().hyperparams ()
]l
metrics={
"train': ['accuracy'l,
'validation': ['accuracy'],
"test': i'accuracy', Metric&'coverage_at_precision', iLBEESiEiQﬂLFO'SS})]
}I
resources={
"train': {'gpus':1},
'predict': {'gpus':6},

Easy dataset, hyperparameter
configuration, K-fold, etc.
Distributed training: simply set
“gpus=8"
Detailed metrics
Anything can be customized:
Pre-processing logic
Post-processing logic
Algorithm code
Metrics

\/‘7

Unified backend system

AutoML

user

Elastic Training workflow
Container
Registry

Dt : split

—

Train, val, test datasets

L@, @_

Algorithm docker
Data processing
docker
T ro siny
node

Pre-processing
pipeline pickle

Post-processing
node

output dataset, metrics

Deployment workflow

____Model artifacts,
pi(lkled pipelines
Algorithm Docker Docker
with model with model

Elastic odeBul Elastic
Container Container
Registry Registry

e

CloudWatch

Benefits:

1) Any trained model is
1-click deployable

2) Scalable

3) Low infrastructure
maintenance

w4 control flow
24 data flow

pull Dockers

push Dockers to container
registry

_/‘7

Issue: Scaling data-processing code

« Pandas: extremely popular
« 34k+ companies using Pandas in 2022 1]

« Simple, flexible API for prototyping/analysis

 Decent speed with small resources (1 CPU) Solutions?

» When deploying, Pandas is slow: « Modin / Dask / Spark:
« Text-preprocessing pipeline:

» Low-latency use cases: « NumPy + Numba / Dict processing:
« Chatbot responses: <50ms latency

« Ads recommendation: <5ms latency

[1] https://discovery.hgdata.com/product/pandas

Litmus Scalable DataFrame (LitSDF)

Idea:
» Expose the Pandas API, but implement different data-layouts under the hood

 Scientists/Engineers can write code in Pandas, but it runs using Numpy / Dicts /
Modin / Dask etc. Might use Pandas itself.

« During deployment, select optimal layout:
« Static: based on number of incoming rows
* Dynamic: use a bandit algorithm / Reinforcement Learning

» Can support upcoming dataframe layouts:
» Vaex (memory-mapped dataframe)
» cuDF (GPU dataframe)

LitSDF: Speedup over Pandas

» Training:

« Use Pandas for 1k-100k rows

» Data processing (post deployment):

 Use Pandas for 1k-100k rows

** LitSDF is a general-purpose library,
can be used during experimentation,
ETL jobs, etc.

-@- GL Pipeline Fit-Ti

ransform -@- GL Pipeline Transform-only

Acknowledgements

Litmus team:

Abhishek Divekar
Gaurav Manchanda
Siba Rajendran
| .' Ramakrishna Nalam
Mohit Gupta
1Y Vivek Sembium

| International Machine Learning, Amazon ~ =y
AL s

Thank You

Abhishek Divekar (adivekar@amazon.com)

International Machine Learning, Amazon

\-/‘7

