

AMAZON RESEARCH DAYS

A DIVERSE NETWORK AUNITED COMMUNITY **AMAZON RESEARCH DAYS**

Squeezing the last DRiP: AutoML for Cost-constrained Product Classification

Abhishek Divekar India Machine Learning, Amazon

Amazon 2021. All Rights Reserved. For questions, please contact adivekar@amazon.com

Background

- Automated Machine Learning (AutoML): Given a training set, automatically discovers best model / ensemble.
 - Useful for non-tech users (PMs, associates) and for scientists to quickly establish benchmarks.
 - First proposed by Auto-WEKA (2013) as "combined algorithm selection and hyperparameter optimization" (CASH) problem.
- Neural Architecture Search (NAS): finds good NNs automatically.
 - Very expensive.

AMAZON RESEARCH DAYS

• **CASH is still king** for most practical AutoML use-cases.

Background

- Popular AutoML systems use tricks to automatically build ML pipelines:
 - Auto-WEKA (Thornton et al., 2013): automatic hyperparameter tuning
 - TPOT (Olson et al., 2016): flexible expression-tree + genetic programming
 - AutoGluon (2019): multi-layer stacking ensemble
 - AutoSklearn2.0 (Feurer et al., 2020): portfolio-based meta-learning, budget allocation using successive halving
 - H2O.ai AutoML (2019): multiple tricks, can run on most cloud platforms
 - Many more (Auto-keras, mljar, hyperopt-sklearn, Ludwig, ...)
- Popular Benchmarks:
 - OpenML AutoML Benchmark
 - <u>ChaLearn AutoML Challenges</u>

Unmasking the problem

- Current AutoML systems: reduce cost of **discovery** process
 - e.g. "find best model within 30 mins"
- Most models are trained, used in production for months, refreshed frequently.
 - Costs of running model in production > one-time cost to discover best model > periodic refresh cost.
- Heuristics to reduce inference cost:

AMAZON RESEARCH DAYS

- Distillation (model distillation, knowledge distillation for deep nets)
- Reduce training time limit (leads to smaller ensembles)
- Question: Can AutoML systems discover high-performing models under explicit cost budget?
 - "Cost" might be inference latency, RAM used, dollar value for loss in recall.

Unmasking the problem

- Compared to FastText, AutoGluon gives 120 bps ROC-AUC uplift on Amazon product classification datasets*
- ...but, AutoGluon incurs ~40x inference cost for single-prediction use-cases (e.g. predicting Alexa utterances) and ~8x inference cost for batch of 10,000.

Algorithm	Mean	Rank	Rank Per-row inference time (ms/row) and cost (\$/MM		
	ROC-AUC	(Champion)	B = 1	$B = 10^{2}$	$B = 10^4$
FastText	96.98 ± 2.37	6.97 (1)	46.1 \$2.95	1.6 \$0.11	0.51 \$0.03
VowpalWabbit	97.54 ± 2.16	5.21 (2)	70.2 \$4.48	<u>2.0</u> \$0.13	0.73 \$0.05
WideAndDeep	97.20 ± 2.62	5.97 (2)	244.3 \$15.61	3.7 \$0.23	0.50 \$0.03
XGBoost	97.87 ± 1.85	<u>4.105</u> (3)	87.3 \$5.57	26.2 \$1.67	1.29 \$0.08
BERT-B	97.28 ± 2.28	6.23 (0)	69.9 \$14.29	8.3 \$1.69	8.74 \$1.79
ELECTRA-S	96.88 ± 2.17	7.92(1)	<u>66.8</u> \$13.65	3.1 \$0.63	1.95 \$0.4
DeBERTa-L	94.00 ± 9.27	6.55 (4)	99.9 \$20.43	29.8 \$6.09	29.7 \$6.08
RoBERTa-L	94.47±11.61	6.29 (2)	79.6 \$16.27	23.5 \$4.81	23.7 \$4.85
AutoGluon	98.18±1.67	2.21 (23)	2465.2 \$157.50	27.9 \$1.78	3.83 \$0.24
AutoGluon-D	97.54 ± 1.91	5.71 (0)	387.5 \$24.75	6.3 \$0.40	2.10 \$0.13

*Average performance numbers from a set of product classification tasks, not representative of production environment.

Credit to: Andrew Borthwick, Oleg Kim, Fayaz Ahmed Farooque, Ethan Xu, Kate Kang, Kee Kiat Koo

DRiP Framework (<u>Discover-Refine-Productionize</u>)

A. Divekar, G. Manchanda, P. Raj, A. Das, K. Tanwar, A. Jagatap, V. Puranik, J. Srinivasan, R. Nalam, N. Rasiwasia India Machine Learning, Amazon

Amazon 2021. All Rights Reserved. For questions, please contact adivekar@amazon.com

AMAZON RESEARCH DAYS

DRiP framework (<u>Discover-Refine-Productionize</u>)

- 1. Train a **seed set** of candidate models
- 2. Iteratively refine (i.e. apply ML techniques to current candidates) and barter (filter bad candidates) to improve cost-performance tradeoff of the current list of candidates
- 3. Select the final candidate as having the lowest *K*-fold cross-validation loss, and cost within budget α (hard-barter). Cost is measured on unlabelled sample of test universe, \mathcal{D}_{unlb}
- 4. Finally, **Productionize** selected model.

DRiP AutoML system

- Our implementation of DRiP framework.
- Select heterogeneous seed algorithms.
 - CPU-based: XGBoost, VowpalWabbit, FastText,
 - GPU-based (Text Transformers): BERT, RoBERTA, DeBERTA, ELECTRA
- Use cost-optimized ML techniques:
 - **1. Pretrain** BERT, ELECTRA on Amazon Product text.
 - **2.** Feature Ranking: reduce feature space (and cost) with min. performance loss.
 - **3.** Bayesian Optimization: automatically find hyperparams with high performance.
 - **4. Cost-constrained ensembling:** combine probability scores of candidates, select best combination **within budget** by *K*-fold performance.

- DRiP produces a cost-performance tradeoff curve* for users to choose the appropriate point.
- Single algorithms and other AutoML systems only produce a single point on this curve.
- As seen, inference cost varies widely for different batch-sizes/use-cases.
- By accepting a user-defined budget, DRiP can find the best model within the budget (materializes a single point on the curve) for that batch size.

*Average performance numbers from a set of product classification tasks, not representative of production environment.

Credit to: Andrew Borthwick, Oleg Kim, Fayaz Ahmed Farooque, Ethan Xu, Kate Kang, Kee Kiat Koo

Compared to AutoGluon (AG)*:

On-par performance at low cost:

DRiP achieves 67% reduction in inference cost at 4bps drop in performance compared to AutoGluon (mean ROC-AUC of 98.14 vs 98.18).

• Minimizing cost:

Low-budget DRiP requires just 44% inference cost, yet improves ROC-AUC by 21bps compared to distilled AG (97.75 DRiP vs 97.54 AG-Distilled).

• Maximum performance:

Without a budget, "Unrestricted" DRiP delivers **98.42 ROC-AUC** vs 98.18 for AG (24bps lift).

*Average performance numbers from a set of product classification tasks, not representative of production environment.

Credit to: Andrew Borthwick, Oleg Kim, Fayaz Ahmed Farooque, Ethan Xu, Kate Kang, Kee Kiat Koo

Conclusion

Cost-constrained AutoML is possible and crucial for business use-cases which are sensitive to cost.

Future work:

- Reduce cost of discovery process (multi-objective cost; bartering schemes).
- Faster Transformer alternatives for larger batch sizes.
- Benchmark on external multiclass/regression problems.
- Alternative ensemble methods (e.g. stacking, bagging, boosting).

Thank you!

Amazon 2021. All Rights Reserved. For questions, please contact adivekar@amazon.com

AMAZON RESEARCH DAYS