
CS 394D Deep Learning Fall 2020: Final Project Report

Abhishek Divekar * Jason Housman * Ankita Sinha * Alex Stoken *

Abstract

We design an automated agent to play Super-
TuxKart Ice Hockey. Ice Hockey falls under the
category of a game with a large state space, mixed
action space and a sparse reward, a very difficult
challenge even in today’s state of the art reinforce-
ment learning. We design a system that exploits
potential simplifications to this system, towards
the goal of designing effective players. We train
a multitask model inspired by CenterNet to as-
sist a controller network using Branching Deep
Q Learning to play ice hockey. Our two-stage
system composes of a “vision” stage which takes
as input the image of the player’s Field of View
(FOV) and predicts world-state attributes. These
are consumed by a “controller” stage which return
actions that update the world-state. This staged
approach allowed us to optimize performance of
the vision and controller portions independently
as sub-teams.

1. Vision system
1.1. Data Generation

We gather images and world-states of six games played
by four randomly-selected AI agents for 2000 frames per
game, totalling 48,000 frames for train and test datasets
each. To introduce variety in the data, we play two of the six
games at AI difficulty levels (0, 1, 2). Thus, in each dataset
we accumulate viewing angles for 24 different players of
varying competence, in 4-player game settings, similar to
the “real” tournament on which we are evaluated. Our
hypothesis is that choosing random players forces the vision
model to learn a “blind-spot” in the lower-middle portion of
the screen where the kart is located, thus allowing the vision
network to predict accurately independent of the kart type;
we see the results of this in Figure 2.

*Equal contribution, ordered alphabetically by last name.
UTexas Email: Abhishek Divekar <adivekar@utexas.edu>,
Jason Housman <jhousman@utexas.edu>, Ankita Sinha
<anki0811@utexas.edu>, Alex Stoken <astoken@utexas.edu>.

At every time step we store a pickled world-state object
(Van Rossum, 2020) from which we extract ground-truths
for our vision tasks. During training, we can use these to
compute (p)uck to (k)art distance:

d =
√
(xp − xk)2 + (zp − zk)2 (1)

(we ignore y-component i.e. vertical height difference since
it is near zero once the puck lands on the field). However,
puck visibility and aimpoints in the FOV must be estimated
by back-calculating the screen pixel coordinates from the
puck’s world-state coordinates as shown in Figure 1.

vview =Mview ·Mprojection · vWorldCoordinates

vNDC =

(
Vpixel[0]

Vpixel[3]
,
Vpixel[1]

Vpixel[3]

)

Visibility =


True if −1 < vNDC [0] < 1

and if vview[2] > 0
False otherwise

(2)

Figure 1. Translating world-state coordinates to pixel coordinates
and computing puck visibility

World-to-View space coordinates are calculated via matrix
multiplication of the view matrix, Mview, the projection
matrix, Mprojection and ground truth world coordinates,
v
WorldCoordinates

, which are available in the PySTK internal
player and world states. The result is a vector of view
coordinates which contain localization components relative
to the camera, including orientation. The orientation can
be used to determine if the ball is behind the player, based
on the sign of the z-coordinate. Those coordinates are then
converted into a vector of normalized device coordinates
vNDC , which represent the orientation of an object as left
(-1 to 0) or right (0 to 1) of the center of a frame (de Vries).
The puck is visible if the first coordinate in the normalized
device-coordinates vector is between -1 and 1 and third
coordinate of vview is greater than zero.



CS 394D Deep Learning Fall 2020: Final Project Report

A manual audit of 100 randomly-sampled ground-truth im-
ages shows that this data generation method produces puck
visibility values with 94% accuracy (5 false positives/1 false
negative), which is sufficient to train a vision system for the
downstream task.

After computing the center-point of the puck, we also com-
pute pixel coordinates that enclose the puck inside a bound-
ing box. We do this by adding and subtracting the radius of
the puck (Super-Tux-Kart-Development-Team) to the first
value in the world coordinate vector, and the height to the
second value of the world coordinate (which we estimated
to be 0.8 Blender Units). Pixel coordinates are computed
for those points. This establishes a rough estimation of the
bounding box over the puck in most cases.

Similar to (Zhou et al., 2019), we used a Gaussian kernel
to transform the calculated bounding boxes into a heatmap,
centered at the midpoint of the bounding box, suitable for
a localization task. Additionally, we generated a second
heatmap to capture the puck-to-kart distance. This was
done through several small tweaks to the code provided in
Homework 4, whereby we take the size heatmap computed
via the bounding boxes, and create a matrix of all ones of the
same size. We then multiply that matrix by the computed
distance value, and using the same masking procedure from
the function to set all non object indexes back to zero. This
heatmap will be zero everywhere, except for the image
coordinates where the puck is spatially located on the screen.

Each datapoint is thus represented by a 5-tuple:

(img, visible, (xpuck loc, ypuck loc), hloc, hdist)

Figure 2. Sample vision network prediction. We observed that the
system is able to accurately detect the puck visibility, aimpoint and
distance for various player types and game combinations.

1.2. Architecture

For our vision tasks, we use a multi-headed network inspired
by CenterNet (Zhou et al., 2019) with a U-Net (Ronneberger
et al., 2015) backend encoder-decoder structure1. We nor-
malize the channels of the input image to the mean and
standard deviation calculated over the entire training set to
improve convergence during training. Our U-Net architec-
ture consists of 4 blocks of strided convolutions, doubling
channels each block (16/32/64/128). Each layer uses Batch
Normalization (Ioffe & Szegedy, 2015). These are followed
by 4 symmetric blocks of up-convolutions which upsample
the activation maps (and halve the channels) to produce a
full-resolution heatmap. In the next sections, we describe
each of the tasks heads which using this heatmap.

1.2.1. TASK 1: PUCK ONSCREEN CLASSIFICATION

To detect whether the puck is visible in the player’s current
Field of View, we use global-average pooling and a single
linear layer on top of the U-Net output. The addition of
Dropout (Srivastava et al., 2014) provides regularization
during training.

1.2.2. TASK 2: PUCK AIMPOINT REGRESSION

Our puck aimpoint head adds a 2D-Convolution layer with
one output channel on top of the U-Net output to predict the
aimpoint heatmap h̃loc). The normalized puck aimpoint is
the spatial argmax of h̃loc

(α̃x, α̃y) = argmax
x,y

= h̃loc

where α̃x, α̃y ∈ [−1, 1].

1.2.3. TASK 3: PUCK DISTANCE REGRESSION

Similar to the aimpoint head, the puck distance head is a 2D
Convolution layer on top of the U-Net output, with a single
output channel (the predicted heatmap h̃dist) which we use
to compute the distance of the puck from the kart, d̃ ≥ 0.

1.3. Training

In this section, we describe the training for each of the tasks.

1.3.1. TASK 1: PUCK ONSCREEN CLASSIFICATION

We perform binary classification to detect whether the puck
is visible in the player’s current Field of View. This task is
well suited to a binary cross-entropy loss (we considered
Focal Loss, but found it unnecessary as the puck visibility

1In particular, we use the Homework 4 solution architecture
with alternate heads, including swapping out the localization
heatmap with the spatial argmax functionality from Homework 5.



CS 394D Deep Learning Fall 2020: Final Project Report

is evenly distributed among the two classes in both train and
test data-sets).
For this task, models trained with color jitter (brightness,
hue, saturation and contrast) did not generalize to the test
data-sets. The ice arena has a particular color palette (light
blue for ice, black for puck etc) which is consistent between
the train and test domains. When the puck is visible but far
away, the color contrast between the puck and the surround-
ing ice rink becomes essential to identification even for the
human eye. We thus conjecture that color jitter during train-
ing adds unnecessary noise that is not present during test
time, so our final training does not use color jitter.

1.3.2. TASK 2: PUCK AIMPOINT REGRESSION

The puck aimpoint is a crucial input to the controller while
searching for the puck on the field; divergence of the pre-
dicted aimpoint from the actual puck aimpoint onscreen
causes the kart to drive in an incorrect direction and often
miss the puck entirely. We regress to the aimpoint with
a Mean-Squared Error loss which penalizes by the square
of divergence, providing a training signal for the predicted
(α̃x, α̃y) to be closer to (αx, αy) providing a more accurate
input for controller steering.

1.3.3. TASK 3: PUCK DISTANCE REGRESSION

To train the output of the distance regression, we compute
the L1 Loss between the ground truth, hdist and the pre-
dicted distance heatmap h̃dist, without aggregation. Fol-
lowing that, we take the ground-truth object localization
heatmap hloc ∈ [0, 1)2 and multiply it by our calculated
loss. This has the effect of up-weighing the loss closer to
the center of the puck higher and nullifying the rest. Finally,
we aggregate by computing the mean of all non zero values
in the loss matrix. The rescaling factor provides a training
signal which guides our predicted aim point to be closer to
the center of the object, as we want to ensure distance is as
accurate as possible towards the center of the puck.

1.4. Performance

We present metrics of our final model on the full test set of
48,000 frames. On this dataset, our model achieves an MSE
loss of 0.281 for puck aimpoint regression and 0.03 L1 loss
for puck distance prediction.

Detecting whether the puck is onscreen can be considered
the preliminary task, as the aimpoint and distance are not
meaningful when the puck is off screen. For puck detection,
we observe that our final model achieves a test ROC-AUC
score of 0.983, which we believe is sufficient for our down-
stream task. As the majority of error in our ground-truth
data is false-positives, we attept to counter this by biasing to-
wards a higher detection threshold from the sigmoid output.
Calculating a Precision-Recall curve shows that increasing

the threshold from 0.5 to 0.9 increases precision by 0.6%
(from 97.2% to 97.8%) at the cost of 0.6% recall (from 96%
to 95.4%); beyond 0.9, recall drops at a rate which exceeds
the increase in precision.
A single detect call to the final model requires 18 ms using
an NVIDIA Tesla V100 GPU (min=6ms, max=34ms) as
averages across 16,000 400x300 image detections.

2. Controller
Traditional team ice hockey has a large state space with near
infinite strategies. SuperTuxKart Ice Hockey is similar in
principle to this in that it also has a large very large state
space and a mixed simultaneous action space. In Super-
TuxKart, the action space is characterized by a continuous
range of values for steering and acceleration and a binary
actions for braking, drifting, nitro and rescue. These actions
are correlated - for example, when braking at zero accelera-
tion, the kart will move in reverse. We explored approaches
to similar problems for inspiration, in particular RoboCup
Soccer (Kitano et al., 1997). While similar in problem space,
RoboCup Soccer agents are more complex given that they
are bipedal with more fine controls, versus the wheeled
robot in SuperTuxKart. Recognizing the wide breadth of
this problem, we aimed to decompose the problem space
into two primary modes: (1) searching for the puck and (2)
driving to and scoring with the puck. Both modes rely on
smooth driving through the ice rink and avoiding crashes.

2.1. Driving Agent Action Network

In an attempt to minimize manual intervention and tuning
of a driving agent, we sought to use deep reinforcement
learning methods. The main driving actions are accelera-
tion, steering and braking. Steering ranges from -1 and 1,
acceleration from 0 and 1 and braking is a discrete binary ac-
tion. This is a mixed action space with both continuous and
discrete variables. In general mixed action action spaces and
continuous action spaces are harder problems in reinforce-
ment learning, so we discretized the continuous variables.
This approach has shown to be successful in improving
reinforcement learning performance (Tang & Agrawal) in
other applications. Previous work (Homework 5) show Su-
perTuxKart agents using normalized device coordinates to
approximate steering angle perform well in racing tasks.
We build on this idea by re-configuring the steering action
space into a steering scaling factor that makes turns more or
less sharp. This scaling factor is discretized into 6 buckets
(scalars between 0 and 5). This discretization is applied to
acceleration by cutting the values into 6 buckets between
zero and one. This gain in simplicity far outweights the cost
of fine grained adjustments since acceleration values vary
across a small scale. Braking is already discrete, but some
modification was needed still needed to make it suitable for



CS 394D Deep Learning Fall 2020: Final Project Report

our network. We bucket the range from zero to one and then
apply a threshold, which when above the threshold would
set braking to True and when below, set it to False.
With the reduced action space, we searched for a reinforce-
ment architecture which could handle simultaneous actions,
and could be implemented efficiently and simply. Deep-Q-
Networks (Mnih et al., 2013) are a fairly straight forward
approach that could be adapted nicely to our problem space.
Vanilla Deep-Q-Networks, however, are not configured for
simultaneous actions, so an extension of Deep-Q-Networks,
the Branching-Dueling-Q-Network (Tavakoli et al., 2017),
was used. 2. The Network3 was kept lightweight, consisting

Figure 3. The Rewards of the Driving DQN, showing its perfor-
mance approaching and keeping within distance of the puck just
through tweaking its steering gain and acceleration gain. The
initial exploration phase and its low reward can be seen at the
beginning, followed by a gradual improvement, some oscillations
in its reward and then some stability towards the end.

of only linear layers that took as input an aim point, dis-
tance, location vector of the player, quaternion vector of
the player, and the magnitude of the player’s velocity. The
agent was then put into a modified tournament environment
with 3 AI’s. The agent was then tasked with following the
puck as it moved throughout the field, getting a negative
reward based on its distance to the puck (the further away
from the puck, the higher the punishment) and the log of its
current speed. We rewarded it for speed, in an attempt to
learn to reverse out of a collision that left the player stuck in
a wall, however that behaviour was not learned. We believe
that the inclusion of the braking action lead to confusion so
we eventually removed it from the from the learned action
space and handled braking and collision recovery manually.
For training, the puck represented an arbitrary location on
the map, the main idea being that if the agent could keep
track and stay on top of a moving object, it could move

2See Appendix for a rudimentary explanation of DQNs and
related extensions

3Implementation of Branching Deep-Q-Network from:
https://github.com/MoMe36/BranchingDQN

to static ones as well. After training, we found that this
training process enabled the kart to arrive at any given target
point without intervention, and interestingly, dribble the ball
efficiently as that strategy enabled it to have control over the
ball so that it wouldn’t lose it.

2.2. Driving Controller Logic

We implemented a controller that simplified the task of win-
ning a game of SuperTuxKart Ice Hockey into two modes:
“search” and “ball”. In search, the goal of the player is to
scan the playing field for the puck. In ball mode, the player
drives to the puck and, under certain conditions, attempts
to dribble the puck into the goal. As each game has two
agents, we created separate, time and state-dependent roles
for the players: (1) striker (2) defender. These roles are
closely related to the tasks. These separate roles are crucial
to prevent our players from interfering with each other and
both trying to dribble the puck. Details on the roles and
modes follow in the next section.

Additionally, the controller “smoothed” the outputs from
the networks by maintaining a memory of critical state con-
ditions. Through this memory, the controller was able to
override bad inputs from either the vision network or the
action network by taking average actions over a few frames.
While both networks are well trained, this smoothing is still
necessary with such a large and complex world space. In all
cases outlined below, the controller returns a final action to
the game that is based on smooth states, not instantaneous
frame states.

The final controller task is monitoring the kart for errors and
rescuing the kart after a collision. When the kart crashes
into a wall, or enters the goal area, the controller uses two
heuristics. First it checks to see if it has direct line of sight
over the center of the field using the visibility computation
seen in section 1. If it does not, it will perform a reverse
action in a direction determined by the quadrant on the
field it is currently in. If the player is stuck against a wall,
then this mode completes once it has direct line of sight
of the center. The second heuristic is used when the the
player is stuck in the goal it will only complete once it has
successfully left the goal, as determined by the player’s
current depth.

2.2.1. ROLES AND MODES

Roles are assigned to players based on their mode and ad-
ditional state conditions. In general, whichever player is
closest to the ball with the ball in their field of view (in
“ball” mode) becomes the striker, and the other player be-
comes the defender. If both players can see the ball, then
the closer of the two (using estimated puck distance from
the vision system) becomes the striker, and the other the
defender. A defender’s task is to continue searching through



CS 394D Deep Learning Fall 2020: Final Project Report

the space, but not to lock on to the ball unless it both sees
it and is closer to it than the striker. The defender moves to
coordinated world state locations to prevent opponents from
scoring and to keep a look out for the ball in case they see it
and have a lower distance than the current striker (in which
case, the defender becomes the striker).

The striker’s main objective is to drive toward the ball and,
when the ball is close, dribble it to the goal. When the striker
can see that ball and is in close proximity, the striker enters
ball mode and slows down to dribble the ball. When the
striker is in ball mode and can also see the goal, the striker
biases it’s aim to dribble the ball into the goal.

In search mode, both players move to specific world coordi-
nates that are designed to form a trajectory that, when both
players are combined, maximized the field of view of the
team over a few frames. Thus, search involves some turning
and communication between agents. When both agents are
in search, the team is able to scan the field most efficiently.

Mode over time for games between Sara the Wizard and
different AI difficulties is shown in Figure 4. Here, we can
see long stretches of “ball” mode, which indicates periods
where Sara is dribbling. It is noteworthy that Sara spends
more time in search when playing against more difficult
agents. This is likely because those agents maintain posses-
sion of and move the puck much faster through the hockey
rink, and thus Sara must do more work to seek out a con-
stantly changing puck location. Sara can lose the ball and go
back into search when she is intercepted by another player
or crashes the ball into a wall.

Figure 4. Modes over time for Sara the Wizard.

3. Conclusion
Our final agent consists of three parts: a multitask vision
system, an automated driving agent for navigating toward
an aim point and the controller that connects the two and

Table 1. Number of goals scored across AI difficulty levels (total
over 100 games)

AI DIFFICULTY LEVEL GOALS SCORED

0 28
1 32
2 31

enforces additional gameplay logic. Through the combi-
nation of these parts, our SuperTuxKart agent learned to
translate it’s field of view into a target, and from that target
and additional state attributes, decide on an optimal action
to score goals as part of a team. An established logic system
was built to translate the game of ice hockey into a task of
searching and controlling. Through the driving agent, the
player could be fed different points around the field that the
ball could be potentially close to. Once the vision system de-
tected the ball, the controller would be able to move towards
it with the driving agent. From there, using prior knowledge
about the field the player would then be able to navigate the
ball towards the goal. We present our benchmarked results
in Table 1. In general, the performance when it came to
searching for and keeping control of the ball met expecta-
tions in most cases. The more difficult controller task was
finding the right angles to score goals, and in general many
of the scored goals seem to come from a good orientation
while retaining possession of the ball. A solution to this
issue may have been a coordinated effort between the two
player agents to score goals, which we leave as future scope.

4. Appendix
4.1. Other Avenues

While the final method was an ensemble of networks , in-
volving Deep-Q-Learning and Computer Vision systems,
the team recognizes that this could be done with an end-
to-end reinforcement learning approach. In theory, Super-
TuxKart Soccer, can be considered a game with a large
continuous state space, and a large mixed simultaneous ac-
tion space with a sparse reward. There have been a variety
of approaches considered for solving tasks such as this, but
are notorious for being very difficult. One source of inspi-
ration for an end-to-end reinforcement learning approach
came from Deepmind creating an agent to play Capture
the Flag. (Jaderberg et al., 2019) Soccer and Capture the
Flag are fundamentally similar in terms of game mechanics,
and the platform used was 3d as well with similar actions.
Our problem, in general was similar, but configuring the
environment and translating the tasks would have been very
challenging, especially without any released code to work
with. In general, though reading through their approach
gave the team the tools to do their own research and come



CS 394D Deep Learning Fall 2020: Final Project Report

up with some approaches making use of some state of the
art methods in reinforcement learning. In particular, we
landed upon using an Asynchronous Actor Critic Approach
(Babaeizadeh et al., 2016) as the base learner, and an Intrin-
sic Curiosity Module(Pathak et al., 2017). The explanation
for how Actor Critic and Intrinsic Curiosity works is beyond
this paper, but in summary an Actor Network predicts an
action, and the Critic determines whether that action was
good, based on the experiences it has already seen. Intrinsic
Curiosity Modules, handle the problems of sparse rewards
by giving the agent an internal reward based on the novelty
of states it has already seen, by having a network attempt
to predict the next state given its current state and action. It
then optimizes by taking the loss of its predicted next state
and the actual next state.

Configuring this method from scratch was beyond this team,
but at the professor’s suggestion in his Reinforcement learn-
ing lecture, making use of pre-written implementations 4

would be the smartest path towards implementing these sys-
tems. Tweaking the environment was straight forward, but
discretizing the actions was less so. An attempt was made
by essentially bucketing steering and acceleration into 20
and 10 values respectively, and then creating a mapping that
took the outputted index from the Actor Critic model to a
combination of those 2 actions. In general, this approach
was incredibly hard to tune due to the breadth of background
knowledge necessary, so was discontinued.

The team also attempted imitation learning with DAGGER
but due to some limitations with the simulator, and the
available time this approach was also scrapped. In general,
the idea was to essentially track the players exact location
and orientation, while keeping an the built-in AI off the map
for one step, and then swapping it with the agent with the
exact same location and orientation as the player, but this
lead to some further technical difficulties.

4.2. Deep-Q-Networks and Extensions

DQNS are an extension to Q-learning, which essentially
track expected reward given an action and a state via a ta-
ble, known as a Q-Table. These Q-Tables don’t scale very
well, so DQNs are an extension that approximates this table
using Deep Learning. DQNs are further augmented by intro-
ducing a replay buffer that allows the network to randomly
sample state action pairs in non-sequential order to reduce
correlation between states, as well as be reminded of past
experiences as they continue to learn. Dueling DQNs are an-
other extension that stabilizes this learning process. This is
necessary, since the network is essentially comparing an out-
putted Q-Value to a target Q-Value that it estimates based on
its experiences, however the target Q-Value changes rapidly

4Prewritten Implementation for A3C and ICM here:
https://github.com/sadeqa/Super-Mario-Bros-RL

as the network trains, which destabilizes training, so adding
a second target network reduces that instability. The Branch-
ing Dueling-Q-Network, finally enables simultaneous action
spaces to take place by creating multiple heads for different
actions, given a shared state representation.

References
Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., and

Kautz, J. GA3C: gpu-based A3C for deep reinforcement
learning. CoRR, abs/1611.06256, 2016. URL http:
//arxiv.org/abs/1611.06256.

de Vries, J. Coordinate systems. URL https:
//learnopengl.com/Getting-started/
Coordinate-Systems.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L.,
Lever, G., Castañeda, A. G., Beattie, C., Rabinowitz,
N. C., Morcos, A. S., Ruderman, A., Sonnerat, N.,
Green, T., Deason, L., Leibo, J. Z., Silver, D., Hass-
abis, D., Kavukcuoglu, K., and Graepel, T. Human-level
performance in 3d multiplayer games with population-
based reinforcement learning. Science, 364(6443):859–
865, 2019. ISSN 0036-8075. doi: 10.1126/science.
aau6249. URL https://science.sciencemag.
org/content/364/6443/859.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Os-
awa, E. Robocup: The robot world cup initiative. In
Proceedings of the First International Conference on Au-
tonomous Agents, AGENTS ’97, pp. 340–347, New York,
NY, USA, 1997. Association for Computing Machinery.
ISBN 0897918770. doi: 10.1145/267658.267738. URL
https://doi.org/10.1145/267658.267738.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning, 2013.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. CoRR, abs/1705.05363, 2017. URL http://
arxiv.org/abs/1705.05363.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical image computing and
computer-assisted intervention, pp. 234–241. Springer,
2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent

http://arxiv.org/abs/1611.06256
http://arxiv.org/abs/1611.06256
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
https://science.sciencemag.org/content/364/6443/859
https://science.sciencemag.org/content/364/6443/859
https://doi.org/10.1145/267658.267738
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1705.05363


CS 394D Deep Learning Fall 2020: Final Project Report

neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Super-Tux-Kart-Development-Team. Making tracks:
Appendix d: Soccer and battle modes. URL https:
//supertuxkart.net/Making_Tracks:
_Appendix_D:_Soccer_and_Battle_Modes.

Tang, Y. and Agrawal, S. Discretizing continuous
action space for on-policy optimization. URL
https://ojs.aaai.org/index.php/AAAI/
article/view/6059.

Tavakoli, A., Pardo, F., and Kormushev, P. Action branching
architectures for deep reinforcement learning. 2017.

Van Rossum, G. The Python Library Reference, release
3.8.2. Python Software Foundation, 2020.

Zhou, X., Wang, D., and Krähenbühl, P. Objects as points.
arXiv preprint arXiv:1904.07850, 2019.

https://supertuxkart.net/Making_Tracks:_Appendix_D:_Soccer_and_Battle_Modes
https://supertuxkart.net/Making_Tracks:_Appendix_D:_Soccer_and_Battle_Modes
https://supertuxkart.net/Making_Tracks:_Appendix_D:_Soccer_and_Battle_Modes
https://ojs.aaai.org/index.php/AAAI/article/view/6059
https://ojs.aaai.org/index.php/AAAI/article/view/6059

