
Extending Whisper, OpenAI’s Speech-to-Text Model

Group 21: Abhishek Divekar (ard3443), Yosub Jung (yj6579), and Roshni Tayal (rt26476)

Department of Computer Science
The University of Texas at Austin

ABSTRACT

We study the performance of OpenAI’s Whisper model, the state-of-the-art Speech-to-text

model, in noisy urban environments. To do so, we create a dataset consisting of 134 minutes of

us reading out loud in both quiet and noisy urban environments (subway, street and cafe) and

manually annotating the recordings at 30 second intervals. Using a powerful multi-GPU AWS

cluster and distributed computing framework Ray, we find that Whisper performs significantly

worse on speeches recorded in noisy environments than on those recorded in quiet environments,

in contrast to assertions made by Whisper authors. This performance gap is particularly severe

for small Whisper models. This finding is concerning since the small models, due to its low

inference-time, are most likely to be deployed on handheld devices (like smartphones), and thus

more likely to be exposed to outside noise that can degrade speech-to-text performance. To

improve performance, we fine-tune the HuggingFace Whisper implementation on a split of our

collected data. We find that fine-tuning on single-speaker noisy speech improves average Word

Error Rate (WER) by 2.81 (from 28.76 to 25.95) and fine-tuning on multi-speaker noisy speech

improves average WER by 2.61 (from 28.76 to 26.15). Thus we are able to successfully adapt

OpenAI Whisper to function reliably in noisy urban environments.

1. INTRODUCTION

Reliable Automatic Speech Recognition (ASR) technology has a huge demand in

countries around the world. For example, in the United States alone, 11.5 million adults report

limited hearing abilities (United States Census Bureau, 2022). In addition, a huge portion of

online speech content is in English, and ASR paired with machine-translation can again benefit

users, e.g. through automatic generation of closed-captions for non-native speakers and those

with limited hearing abilities.

Deep learning is energizing speech-to-text technology since Baidu’s AI team led by

Andrew Ng built a deep learning model in 2014 (Hannun et al, 2014). These models perform an



order of magnitude better than existing speech-to-text technology, suggesting the possibility of a

reliable Speech-to-text via Deep learning. This research area was further excited by Open AI’s

recent ASR Deep Learning model, Whisper (Radford et al, 2022). According to Whisper authors,

this model performs at-par with human experts on transcribing various English speeches to

English texts, and also works for multilingual speech transcription and machine-translation.

Given the large latent demand for reliable ASR technology, especially in real-time

situations, we have decided to further study the performance of Whisper. In particular, we focus

on the model performance in a noisy urban environment, where many future users reside. A

challenge is that in an urban environment, noises such as construction, traffic and general

population sounds will pollute dialogues and conversations, decreasing the signal-to-noise ratio

and potentially weakening machine learning speech-to-text models. Although the Whisper paper

assesses the model performance in a noisy environment, the noise is artificially generated from

the music recording setting. It is hard to know whether that analysis carries over to a real-world

noisy urban setting.

We assess how Whisper performs in a noisy urban setting, fine-tune the model with noisy

conversations data, and improve its performance. To that end, we collect a dataset of English

speeches recorded in urban environments. The first comes from manual recording: the three of us

(authors) read four English texts of different length out loud in various urban settings. We record

both in “quieter” environments (home) and in “noisier” environments (subway, street and cafe),

to contrast Whisper’s performance with respect to noises.

We note that Whisper is an industry-grade model with sizes ranging from 39 million to

1.5 billion parameters, 60 times more parameters than ResNet50 which has only 25 million

parameters (He et al, 2016). Thus, computation — both fine-tuning and inference — is

non-trivial and requires accelerated hardwares. To that end, we spin up three AWS p3dn.24xlarge

instances (having 8 NVIDIA V100 GPUs, each with 32 GB GRAM), and schedule fine-tuning

jobs using the Ray distributed computing framework (Moritz et al, 2018).

Radford et. al. (2022) claim that Whisper performs high-quality zero-shot transcription in

a wide range of environments. However, we observe that Whisper performance severely

degrades on speeches recorded in noisy environments, than on those recorded in quiet

environments. We find this performance gap is particularly severe for smaller models (“tiny” and

“base” sizes). We demonstrate that the inference-time of small Whisper models is much lower

2



compared to larger models, and thus small models are most likely to be adapted on handheld

devices, thus being more likely to be exposed to noisy environments. This motivates the need to

bridge the performance gap between the noisy and the quiet speeches for small models, by

fine-tuning the model weights on noisy speech. As Whisper is based on the Transformer

architecture, fine-tuning will not cause an increase in inference-time, thus we get this

performance benefit with no downsides.

To improve performance, we fine-tune the fastest Whisper model (“tiny”) on the dataset

we have manually collected. We fine-tune a custom model for each speaker and show that for

speeches recorded in noisy urban environments (subway, street and cafe), we achieve an average

2.81 decrease in Word Error Rate (WER) from 28.76 to 25.95. This improvement was achieved

using just 14.08 minutes of annotated speech data for each speaker. With more data, Whisper

models may be even more performant on noisy recordings.

We additionally evaluate a “multi-speaker” model, wherein we fine-tune on noisy

recordings from all speakers. We observe that this improves average WER by 2.61 (from 28.76

to 26.15), and thus does not outperform single-speaker fine-tuning.

The rest of the paper is organized as follows. Section 2 reviews notable speech-to-text

deep learning models. Section 3 documents our data collection-efforts. Section 4 explains our

method behind assessing the model performance and fine-tuning. Section 5 summarizes our

findings. Section 6 concludes our findings.

2. LITERATURE REVIEW

Deep Learning application to speech-to-text came from Baidu’s AI team led by Andrew

Ng (Hannun et al, 2014; Amodei et al, 2016). Before 2014, speech-to-text systems were

rule-based written by human programmers. The Baidu’s Deep Speech model is a supervised

model that encodes speech spectrograms using CNN (LeCun et al, 1989) and applies GRU

(Chung et al, 2014) to encode and get text transcription. They train the model with Baidu’s

internal data consisting of 11,940 hours of English and 9,400 hours of Mandarin recordings. The

model performs as well as humans on clean speech, easily beating the state-of-the-art rule-based

models. For example, for European accented English data, the human error-rate is 17.55 WER

while the model error-rate is 13.56 WER. However, the model underperforms on accented

speech.

3



Another break-through came in 2019 and 2020 when Facebook released its model

Wav2Vec (Schneider et al, 2019; Baeveski et al, 2020). The Wav2Vec model is a self-supervised

model, similar to Word2Vec (Mikolov et al, 2013), that takes untranscribed (unsupervised)

speech data, masks some segments of speech, and predicts the masked segment using unmasked

segments. This self-supervision encodes the speech. The encoder architecture is similar to

Baidu’s Deep Speech except it uses Transformer (Vaswani et al, 2017) instead of GRU. They

then build a decoder using a small dataset of transcribed speeches. They train the model on

53,200 hours of untranscribed English speech and on hundreds of hours (the exact number

depends on the experiments) of transcribed speech. The model performance was an order of

magnitude better than the state-of-the art models including Deep Speech mentioned above; the

model error-rate is 1.8 to 3.3 WER.

The most recent break-through in this space is OpenAI’s Whisper model (Radford et al,

2022). The Whisper model architecture is similar to Facebook’s Wav2Vec, using a CNN to

encode speech spectrograms and applying multiple Transformer layers (Vaswani et al, 2017).

The innovation is that they use weak supervision (data with incomplete or noisy labels) instead

of unsupervised audio or gold-standard annotations. They train on 680,000 hours of multilingual

data via weak supervision, using an end-to-end encoder-decoder architecture. The performance is

remarkable, approaching and sometimes beating human performance across a variety of datasets,

despite not fine-tuning on any specific dataset.

A particularly relevant finding of Whisper to us is its performance on noisy data. Using

an artificial noise injector system called the Audio Degradation Toolbox (Mauch and Ewert,

2013), Radford et al. (2022) show the Whisper model performs better than other existing models

in a noisy setting.

But this discussion is limited for two reasons. First, it lacks an objective performance

benchmark. Outperforming other models isn’t enough if other models don’t perform well. The

paper shows the Whisper model error rate is as high as 100 WER (almost ten times that of the

first Deep Learning model from Baidu) when injecting a high level of noise. Second, the noise

tool is artificially generated for music settings and may not mirror the real world noises.

Particularly, in an urban environment, noises such as construction, traffic, and background

speech sounds pollute dialogues and conversations, and those noises may not be well captured by

4



noises from the music context. We fill this gap in this paper by zooming on Whisper’s

performance with respect to speech recorded in real-world urban settings.

3. DATASET AND EVALUATION METRICS

We have constructed the dataset with our own audio samples. For recording the audio

samples, we perform readings from four different text-sources: (i) the introduction section of the

Whisper paper (Radford et al, 2022), (ii) conversational dialogue from the last episode of TV

show “Friends” (Bright, 2004), (iii) an excerpt of Amazon CEO Jeff Bezos’s congressional

statement (Amazon, 2020), and; (iv) our syllabus for the UT Austin Case Studies in Machine

Learning course (Jiao, 2022). All the sources are paired with their transcripts, taken from the

Internet.

The recordings for all the above-mentioned text-sources have been done in two different

environmental settings - quiet and noisy. This helped us to get a diverse dataset covering a broad

distribution of audio from two different environments, recording setups, and speakers. We

followed a uniformity in the recording language which is English. Moreover, all these recordings

have been done at the sampling rate of 44100 Hz and 16 bit signed PCM in WAV format, using

Audacity tool1.

As mentioned, we recorded the data in two environmental settings - one inside a quiet

room at home and the other in a noisy atmosphere. We capture “noisy” speech data in different

urban settings, with the purpose of having a good comparison in the performance of the model.

One author recorded the noisy data in the ambience of Starbucks cafe in Bangalore, India;

second recorded on the New York City subway; third recorded on a busy crowded street in

Ranchi, India. So, each of the authors produced 8 recordings (24 total files), corresponding to the

four text-sources in two environments. Each of the text-sources varies in length. Jeff Bezos’s

congressional statement is the longest transcript and contains about 1888 words, whereas

Friends’ episode’s conversational dialogue holds 459 words, the introduction to Whisper paper

consists of about 771 words and the syllabus for our subject CSML, being the shortest transcript,

carries 228 words. However, reading all of these sources we were able to collect around 2 hours

and 14 minutes of recording in total.

1 Audacity® software is copyright © 1999-2021 Audacity Team.
The name Audacity® is a registered trademark.

5



Since the Whisper model has a limitation of decoding speech no longer than 30 seconds

of duration, we further chunked our 24 recordings, producing 360 audio chunks each of length

under 30 seconds. For splitting each recording into chunks, we used Audacity to listen to the

data, and then add timestamps to the text-transcripts corresponding to each recording. The

timestamps were marked in such a way that we preserved the boundary of the sentences in the

text, along with ensuring the duration of each chunk to be less than 30 seconds. We use Audacity

to track the waveform of each of our recordings to mark on the pauses before the start of a long

sentence, keeping in mind not to exceed the duration of the chunks (sentences between two

timestamps) beyond 30 seconds. In total, each of the three authors produced 8 annotated

transcripts, one for each audio file.

The average length of chunk for the three speakers is shown in Table 1. We anonymised

author names to prevent any implicit bias to our experimental approach.

Speaker Urban noise
setting

Total audio length
(in seconds)

Number of
chunks

Average chunk
length (in seconds)

Author A Cafe 2564 128 20.03

Author B Busy street 2789 119 23.44

Author C Subway 2693 113 23.83

Table 1: Audio recording statistics of different speakers

We fine-tuned the Whisper model on two of the sources: Jeff Bezos’s congressional

statement and Friends' last episode dialogue (dataset shorthands: “Bezos” and “Friends”). We

used the other two data sources as our test dataset: Whisper paper’s Introduction and syllabus of

Case studies in Machine Learning (dataset shorthards: “Whisper” and “CSML”). As we are

interested in performance in noisy urban environments, we only use the “noisy” portion of our

test sets.

The metric that we have used for measuring the performance is Word Error Rate (WER)

(Woodard et al, 1982). WER is a common metric for evaluating the performance of an Automatic

Speech Recognition task. It is based on the Levenshtein distance, which is a measurement of the

differences between the sequences of words in a transcription. A higher value of WER,

6



represents lower accuracy of the ASR system, and a lower value of WER indicates better

accuracy in recognizing speech.

The formula for calculating WER is:

Word Error Rate = (Subs + Ins + Del) / Number of Spoken words

where, Subs is the number of substitutions, Ins refers to the number of insertions and Del is the

number of deletions. In Section 5 we discuss the WER of Whisper models before and after

fine-tuning on our data.

4. METHODS

Figure 1 summarizes the architecture of the Whisper model. It is an encoder-decoder

Transformer model which has been trained on multiple tasks related to speech processing such as

speech translation, spotting of spoken language, multilingual speech recognition and voice

activity detection. The Transformer decoder block predicts all of the above listed tasks as a

sequence of tokens, allowing replacement of multiple stages of a conventional speech processing

pipeline with a single model. OpenAI has released nine Whisper checkpoints in two categories:

(i) English-only checkpoints: four models are released (“tiny” to “medium” size), and (ii)

Multi-lingual: five models are released (“tiny” to “large” size) with coverage over 96 languages.

All varieties of Whisper are trained on weakly supervised datasets, where each audio

recording is broken into 30-second chunks. To adapt Whisper to noisy urban environments, we

must first preprocess the data to ensure the data is fed to the Whisper model appropriately.

Concretely, we first downsample our recorded audio from 44,100 Hz to 16,000 Hz which is the

typical sampling rate for human speech. Then, we use the transcripts (Section 3) which have

hand-annotated timestamps of up to 30 seconds. We use these timestamps to split the

1-dimensional amplitude vector into chunks, and ensure that each chunk has length less than

480,000 (30 seconds x 16,000 Hz sampling rate). We thus end up with a pair of (i) audio chunk

and (ii) transcript chunk, which can be used for training and inference of Whisper. Each such pair

becomes a row in our dataset.

7



Figure 1. Overview of Whisper model architecture

We fine-tune the “whisper-tiny.en” model, as it is the fastest one and can thus be adapted

for a handheld device. We evaluate the following hypothesis: can we improve Whisper’s WER

on noisy urban data, when we fine-tune on audio from a similar noisy setting? Within this

hypothesis we have two sub-criterion: (i) does single-speaker or multi-speaker training data

provide better performance? (ii) does a fine-tuning on a mix of different urban environments

provide a holistic performance improvement?

To perform fine-tuning, we take a baseline as the off-the-shelf Whisper model which is

implemented in HuggingFace Transformers library (Wolf et al, 2020). The library exposes all

nine model checkpoints released by OpenAI, which can be fine-tuned using the Seq2SeqTrainer

class. Each input data must be passed through the WhisperProcessor class, which (i) tokenizes

the ground-truth transcript using WhisperTokenizer (ii) converts the 1-dimensional audio vector

(amplitude wave) into a log-Mel spectrogram of dimensions (80, 3000), where 80 is the

8



feature-size of the spectrogram. HuggingFace’s Whisper implementation greatly sped up the

experimentation process, but has two limitations (i) it is needed to disable HuggingFace’s

caching of intermediate results so as to ensure reproducibility across runs (ii) at the moment,

long-form text (i.e. greater than 30 seconds) is not supported for fine-tuning or inference, thus we

needed to use our chunking procedure for both.

We note that Whisper is an industry-grade model with non-trivial computation needs, and

thus our training setup required a fair amount of machine learning engineering. For all

experiments, we spun up three AWS p3dn.24xlarge instances (8 NVIDIA V100 GPUs, each

equipped with 32 GB RAM), with a shared AWS Elastic File System for data storage. This gives

us 24 GPUs across which we can parallelize our experiments. As we have a small number of

training rows (only 124 for noisy data across all speakers), the distributed-data parallelism

paradigm cannot be used to speed up computation. Instead, we train 24 models, exploring

different hyperparameter combinations in parallel. To do so in a principled manner, we use Ray

(Moritz et al, 2018). Ray is a distributed computing framework, which makes it easy to write

distributed programs. We deploy a Ray cluster using one p3dn.24xlarge instance as the “head”

node and the other two instances as “worker” nodes. By configuring a Ray Task using

@ray.remote, we can ensure that each copy of the model utilizes a single GPU and 10 CPUs for

fine-tuning. Each node has its own in-memory Redis cache, which stores global object references

which are synchronized across nodes; for complete details see (Moritz et al, 2018). We push our

dataset (including the tensors) as a remote object reference, so that they can be downloaded on

each worker using ray.get(...) command. This minimizes the disk-reading overhead and ensures

each training run has a consistent view of the dataset. During each run, we apply filters based on

speaker and text-source, so as to create the relevant train and test splits.

With this setup, we can write a model-orchestration code such that we can submit many

fine-tuning jobs (having different hyperparameters) to the cluster, and they are executed in

parallel. Ray thus becomes a convenient interface to tune hyperparameters. In Table 2, we

describe the various hyperparameter-ranges which we explored when tuning the whisper-tiny.en

model on our noisy dataset. Note that we save the best model across epochs.

In total, we fine-tuned 178 whisper-tiny.en models, where each model’s forward pass

requires 15.339 milliseconds for each second of audio to be transcribed.

9



Hyperparameter Ranges explored

Train batch size 2 to 16

Training epochs 10
(best model across epochs is saved)

Learning Rate 1e-6 to 3e-5

Optimizer AdamW

fp16 True

Gradient accumulation steps 1

Warmup steps 250 to 1000

Gradient checkpointing True

Table 2. Hyperparameter ranges explored during fine-tuning of whisper-tiny.en.

These are forwarded to the HuggingFace Seq2SeqTrainer

Modern deep learning models include several sophisticated techniques to ensure that they

are trained appropriately and quickly. We use the following techniques: (i) mixed-precision

training: here, we use a combination of 16-bit and 32-bit floating-point operations. Even though

the underlying NVIDIA V100 hardware is 32-bit, representing model weights, activations and

gradients as 16-bit floating-point tensors can speed up computation by up to 3x. This is

controlled by the “fp16” parameter; (ii) gradient accumulation: this performs several forward and

backward passeses and sums up the gradients, before finally updating the model. This is most

useful when we have limited GPU memory and we want to simulate a larger batch size: e.g. if

we set a batch size of 8 and gradient accumulation of 6, then we do 6 forward-backward passes

and accumulate gradients of 8 x 6 = 48 examples, before updating the model as one “step” of

gradient descent. In our situation we have sufficiently high GPU memory (32GB) so we can set

this to 1, which means we update model weights after each forward-backward pass (standard

procedure); (iii) warmup steps: in many pre-trained deep learning models (including Whisper),

setting a very high learning rate during fine-tuning can make the model forget pre-trained

representations. Additionally, when using adaptive optimizers such as Adam, AdamW, or

RMSProp, a few steps of gradient descent are needed to calculate accurate statistics of the

descent procedure. Thus, we use warmup, wherein for a few steps, we linearly increase the

10



learning rate up to the final value, thus gathering accurate statistics for the rest of the training

steps; (iv) gradient checkpointing: modern deep learning models have several million to billions

of parameters. When we perform a forward-pass, we compute the activations for each layer in

the so-called “computation graph”. The activations of any particular layer is a tensor of

dimension B x layer_output_shape, where B is the batch size during training. If we increase the

batch size, we end up storing larger and larger tensors in memory during each forward-backward

pass. With gradient checkpointing (Chen et al, 2016), we can train an n-layer network with O(√n)

memory cost, by discarding activations during the forward pass and recomputing them as needed

in the backward pass. Thus, we can try out larger batch sizes and deeper models without

worrying about exceeding GPU memory.

5. RESULTS

Figure 2 shows the performance of various Whisper models on speeches recorded in

quiet and noisy environments. Each panel corresponds to a different Whisper model, where the

model size increases as we move from left to right and from top to bottom. The models are all

English-only transcription models: whisper-tiny.en (39M parameters), whisper-base.en (74M

parameters), whisper-small.en (244M parameters), whisper-medium.en (769M parameters). We

do not evaluate whisper-large (1.5B parameters) as there is no English-only version available.

The y-axis is the Word Error Rate (i.e. high number means less performant), while the x-axis

denotes different speeches. For each speaker, we show the model’s error rate on the person’s

noisy (blue) and quiet (orange) speeches.

We note three findings. First, we see that across all models and speakers, the error rate on

speeches recorded in noisy environments (blue) is higher than that recorded in quiet

environments (orange). Second, the error rate decreases as we move from small to large models,

meaning large models perform better on all of our data. Given larger models’ expensive

computation, there is a trade-off between accuracy and inference time. Third, although larger

models improve on both noisy and quiet speeches, there always exists a performance gap

between the two.

11



Figure 2. Out-of-box performance of various Whisper models. We evaluate the two test datasets

(i.e. CSML+Whisper) as a single combined test-set. We measure WER in both noisy and

quiet settings, to observe the performance degradation due to urban noise.

The third finding needs further elaboration. We see that small Whisper models (“tiny”

and “base”) perform particularly worse on noisy speeches, in all urban settings. This is

concerning because handheld devices (e.g. smartphones) are most likely to be exposed to noisy

environments (e.g. on a train to work) and these devices have limited computing resources and

thus need to use smaller models. Thus, we are motivated to enhance the small models so that the

performance gap between the noisy and the quiet speeches is not as dramatic, while still

maintaining low prediction times. In Figure 3, we showcase the differences in prediction time

between Whisper variants: the “medium” model (769M params) is 3.65x slower than the “tiny”

12



model (39M). We note that these numbers were generated on a NVIDIA V100 GPU rather than a

mobile device, so the exact prediction time might differ on a mobile device, but we expect the

relative difference in inference times to be similar.

Figure 3. Inference time for various Whisper model sizes. The x-axis measures inference time to

transcribe one second of monophonic speech with a sampling rate of 16 kHz.

Now we turn to our attempts to improve Whisper’s performance on noisy speeches. We

fine-tune “whisper-tiny.en” on the training data of our noisy recordings using the “Bezos” and

“Friends” text-sources. We tried various hyperparameters as shown in Table 2. and chose the

most performant configuration. Table 3 showcases our results in various settings.

Experiment Train
dataset

Train
WER

Test
dataset

Test
WER Best Hyperparameters

Baseline N/A N/A
Author A

Noisy
(CSML+Whisper)

28.69 N/A

Baseline N/A N/A
Author B

Noisy
(CSML+Whisper)

26.93 N/A

Baseline N/A N/A
Author C

Noisy
(CSML+Whisper)

30.66 N/A

Single-speaker
finetuning

Author A
Noisy

(Bezos+Friends)
24.61

Author A
Noisy

(CSML+Whisper)
24.52

batch_size=8
fp16=True

gradient_accumulation=1

13



gradient_checkpointing=True
train_epochs=10

learning_rate=1e-05
warmup_steps=100

Single-speaker
finetuning

Author B
Noisy

(Bezos+Friends)
22.64

Author B
Noisy

(CSML+Whisper)
24.39

batch_size=2
fp16=True

gradient_accumulation=1
gradient_checkpointing=True

train_epochs=10
learning_rate=3e-05
warmup_steps=500

Single-speaker
finetuning

Author C
Noisy

(Bezos+Friends)
23.18

Author C
Noisy

(CSML+Whisper)
28.93

batch_size=2
fp16=True

gradient_accumulation=1
gradient_checkpointing=True

train_epochs=10
learning_rate=3e-06
warmup_steps=250

Multi-speaker
finetuning

Author A+B+C
Noisy

(Bezos+Friends)
23.9

Author A
Noisy

(CSML+Whisper)
25.43

batch_size=2
fp16=True

gradient_accumulation=1
gradient_checkpointing=True

train_epochs=10
learning_rate=1e-05
warmup_steps=500

Multi-speaker
finetuning

Author A+B+C
Noisy

(Bezos+Friends)
27.87

Author B
Noisy

(CSML+Whisper)
23.27

batch_size=2
fp16=True

gradient_accumulation=1
gradient_checkpointing=True

train_epochs=10
learning_rate=3e-06
warmup_steps=500

Multi-speaker
finetuning

Author A+B+C
Noisy

(Bezos+Friends)
34.6

Author C
Noisy

(CSML+Whisper)
29.75

batch_size=2
fp16=True

gradient_accumulation=1
gradient_checkpointing=True

train_epochs=10
learning_rate=1e-06
warmup_steps=250

Table 3. Hyperparameters and Word Error Rate (WER) for various experimental settings

14



We see that during single-speaker finetuning, model performance improves by an average

of 2.81 WER (28.76 to 25.95) and with multi-speaker finetuning, model performance improves

by an average of 2.61 WER (28.76 to 26.15). This indicates that we should attempt to fine-tune a

customized model for each speaker and noise setting, rather than build a single model which

works better across noise settings. As future work, we can explore training a higher-level audio

classifier to detect which urban noise setting the user is in (expert model), and select a more

performant model accordingly.

6. DISCUSSION AND CONCLUSION

In this paper, we study the performance of Whisper in a noisy urban environment. We

show that Whisper performs worse on speeches recorded in noisy environments than on those

recorded in quiet environments. In particular, small Whisper models perform particularly worse

on noisy speeches. This is concerning because handheld devices (e.g. smartphones) are likely to

be exposed to noisy environments (e.g. on a train to work) and these devices probably need to

use smaller models (e.g. whisper-tiny) due to limited computational resources. Thus, we attempt

to enhance the small model to bridge the performance gap between the noisy and the quiet

speeches.

We show that training on a small dataset of speeches recorded in noisy environments

improves the model performance. We see that during single-speaker fine-tuning, model

performance improves by an average of 2.81 WER (28.76 to 25.95) and with multi-speaker

finetuning, model performance improves by an average of 2.61 WER (28.76 to 26.15). Thus,

single-speaker fine-tuning is preferred.

There are several next steps. First, we plan to share the results with HuggingFace’s

Whisper Fine-Tuning Sprint running from December 2, 2022 through December 22, 2022

(Hugging Face, 2022). Here, we will share our results with the community of machine learning

scientists and engineers who work at the fore-front of ASR technology. Second, we plan to

collect more noisy Speech-to-text data and further fine-tune Whisper. This requires scaling to

beyond a few people reading out scripts as performed in the current work. One avenue is to

gather volunteers (e.g., HuggingFace community, YouTubers whose videos are set outdoors) who

are willing to share their own recordings. Third, we may build an auxiliary noise-canceling deep

15



learning model to “clean out the noise” as a preprocessing procedure. Although we could not

identify an organization pursuing this project as of now, we can imagine commercial

opportunities, suggesting companies pursuing this project in the future.

REFERENCES

1. Amazon. (2020). Jeff Bezos Congressional statement. Statement by Jeff Bezos to the U.S.

House Committee on the Judiciary.

https://www.aboutamazon.com/news/policy-news-views/statement-by-jeff-bezos-to-the-u

-s-house-committee-on-the-judiciary

2. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., ... &

Zhu, Z. (2016). Deep speech 2: End-to-end speech recognition in English and Mandarin.

In the International Conference on Machine Learning (pp. 173-182). PMLR.

3. Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for

self-supervised learning of speech representations. Advances in Neural Information

Processing Systems, 33, 12449-12460.

4. Bright, K. (Director). (2004). Friends Last Episode (Season 10, Episode 1018) [TV series

episode]. In Friends. https://www.livesinabox.com/friends/scripts.shtml

5. Cartwright, M., Cramer, J., Mendez, A. E. M., Wang, Y., Wu, H. H., Lostanlen, V., ... &

Bello, J. P. (2020). SONYC-UST-V2: An urban sound tagging dataset with

spatiotemporal context. arXiv preprint arXiv:2009.05188.

6. Chen, T., Xu, B., Zhang, C., & Guestrin, C. (2016). Training deep nets with sublinear

memory cost. arXiv preprint arXiv:1604.06174.

7. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

8. Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., ... & Ng, A. Y.

(2014). Deep speech: Scaling up end-to-end speech recognition. arXiv preprint

arXiv:1412.5567.

9. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 770-778).

16

https://www.livesinabox.com/friends/scripts.shtml


10. Hugging Face. (2022). Whisper Fine-Tuning Event. GitHub repository.

https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event

11. Jiao, D. J. (2022). Case Studies in Machine Learning Syllabus. Machine Learning and its

Applications.

https://courses.edx.org/asset-v1:UTAustinX+CSMS.ML.312+2T2022+type@asset+block

@ML_and_Applications_Revised_Syllabus.pdf

12. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &

Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.

Neural computation, 1(4), 541-551.

13. Mauch, M., & Ewert, S. (2013). The audio degradation toolbox and its application to

robustness evaluation.

14. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

15. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., ... & Stoica, I.

(2018). Ray: A distributed framework for emerging AI applications. In the 13th USENIX

Symposium on Operating Systems Design and Implementation.

16. Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2022).

Robust speech recognition via large-scale weak supervision. OpenAI Blog.

17. Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). Wav2vec: Unsupervised

pre-training for speech recognition. arXiv preprint arXiv:1904.05862.

18. United States Census Bureau, (2022). Deaf History Month. United States Census Bureau.

https://www.census.gov/library/audio/profile-america/profileodd/profile-odd-13.html

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems, 30.

20. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., ... & Rush, A. M.

(2020). Transformers: State-of-the-art natural language processing. In Proceedings of the

2020 conference on empirical methods in natural language processing: system

demonstrations.

17

https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event
https://www.census.gov/library/audio/profile-america/profileodd/profile-odd-13.html


21. Woodard, J. P., & Nelson, J. T. (1982). An information theoretic measure of speech

recognition performance. In Workshop on standardization for speech I/O technology,

Naval Air Development Center, Warminster, PA.

18


